Sunday, September 28, 2008

NEURAL NETWORKS DETAIL

NOTE ALL THE FIGURES OF THE TOPIC STATED UNDER ARE POSTED UNDER A SEPARATE POST OF FIGURES NEUAL NETWORK
What is a Neural Network?
An Artificial Neural Network (ANN) is an information processing paradigm that is inspired by the way biological nervous systems, such as the brain, process information. The key element of this paradigm is the novel structure of the information processing system. It is composed of a large number of highly interconnected processing elements (neurones) working in unison to solve specific problems. ANNs, like people, learn by example. An ANN is configured for a specific application, such as pattern recognition or data classification, through a learning process. Learning in biological systems involves adjustments to the synaptic connections that exist between the neurones. This is true of ANNs as well.

Why use neural networks?


1Adaptive learning: An ability to learn how to do tasks based on the data given for training or initial experience.
2Self-Organisation: An ANN can create its own organisation or representation of the information it receives during learning time.
3Real Time Operation: ANN computations may be carried out in parallel, and special hardware devices are being designed and manufactured which take advantage of this capability.
4Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads to the corresponding degradation of performance. However, some network capabilities may be retained even with major network damage.


4 Architecture of neural networks
4.1 Feed-forward networks
Feed-forward ANNs (figure 1) allow signals to travel one way only; from input to output. There is no feedback (loops) i.e. the output of any layer does not affect that same layer. Feed-forward ANNs tend to be straight forward networks that associate inputs with outputs. They are extensively used in pattern recognition. This type of organisation is also referred to as bottom-up or top-down.
4.2 Feedback networks
Feedback networks (figure 1) can have signals travelling in both directions by introducing loops in the network. Feedback networks are very powerful and can get extremely complicated. Feedback networks are dynamic; their 'state' is changing continuously until they reach an equilibrium point. They remain at the equilibrium point until the input changes and a new equilibrium needs to be found. Feedback architectures are also referred to as interactive or recurrent, although the latter term is often used to denote feedback connections in single-layer organisations.

Figure 4.1 An example of a simple feedforward network
(ALL FIGURES ARE PUBLISHED SEPARATELY UNDER THE SUB HEADING & SEPARATE POST OF-
"FIGURES NEURAL NETWORKS")
Figure 4.2 An example of a complicated network
4.3 Network layers
The commonest type of artificial neural network consists of three groups, or layers, of units: a layer of "input" units is connected to a layer of "hidden" units, which is connected to a layer of "output" units. (see Figure 4.1)
The activity of the input units represents the raw information that is fed into the network.
The activity of each hidden unit is determined by the activities of the input units and the weights on the connections between the input and the hidden units.
The behaviour of the output units depends on the activity of the hidden units and the weights between the hidden and output units.
This simple type of network is interesting because the hidden units are free to construct their own representations of the input. The weights between the input and hidden units determine when each hidden unit is active, and so by modifying these weights, a hidden unit can choose what it represents.
We also distinguish single-layer and multi-layer architectures. The single-layer organisation, in which all units are connected to one another, constitutes the most general case and is of more potential computational power than hierarchically structured multi-layer organisations. In multi-layer networks, units are often numbered by layer, instead of following a global numbering.
4.4 Perceptrons
The most influential work on neural nets in the 60's went under the heading of 'perceptrons' a term coined by Frank Rosenblatt. The perceptron (figure 4.4) turns out to be an MCP model ( neuron with weighted inputs ) with some additional, fixed, pre--processing. Units labelled A1, A2, Aj , Ap are called association units and their task is to extract specific, localised featured from the input images. Perceptrons mimic the basic idea behind the mammalian visual system. They were mainly used in pattern recognition even though their capabilities extended a lot more.
Figure 4.4
In 1969 Minsky and Papert wrote a book in which they described the limitations of single layer Perceptrons. The impact that the book had was tremendous and caused a lot of neural network researchers to loose their interest. The book was very well written and showed mathematically that single layer perceptrons could not do some basic pattern recognition operations like determining the parity of a shape or determining whether a shape is connected or not. What they did not realised, until the 80's, is that given the appropriate training, multilevel perceptrons can do these operations.

Applications of neural networks

Since neural networks are best at identifying patterns or trends in data, they are well suited for prediction or forecasting needs including:
1sales forecasting
2industrial process control
3customer research
4data validation
5risk management
6target marketing


7Neural networks in medicine

8Modelling and Diagnosing the Cardiovascular System
9Neural Networks in business

No comments: